Как найти ср время в физике
Перейти к содержимому

Как найти ср время в физике

  • автор:

Как найти среднюю скорость

Rendered by QuickLaTeX.com

В данной статье рассказано о том, как найти среднюю скорость. Дано определение этого понятия, а также рассмотрено два важных частных случая нахождения средней скорости. Представлен подробный разбор задач на нахождение средней скорости тела от репетитора по математике и физике.

Определение средней скорости

Средней скоростью движения тела называется отношение пути , пройденного телом, ко времени , в течение которого двигалось тело:

Научимся ее находить на примере следующей задачи:

Тело двигалось 3 мин. со скоростью 5 м/с, после чего 7 мин. двигалось со скоростью 3 м/с. Найти среднюю скорость движения тела.

s = s_1 + s_2 = 2160

  • Переведем все величины в Международную систему единиц СИ. В этой системе единицей измерения времени является секунда. Следовательно, тело двигалось на первом участке пути в течение с, а на втором участке пути в течение с.
  • Найдем теперь полный путь, пройденный телом. На первом участке тело прошло м пути. На втором участке пути тело прошло м пути. Следовательно, общий пройденный телом путь составляет м.
  • Общее время движения составляет с. Следовательно, средняя скорость движения тела составляет:
    м/с.

Обратите внимание, что в данном случае это значение не совпало со средним арифметическим скоростей и , которое равно:
м/с.

Частные случаи нахождения средней скорости

1. Два одинаковых участка пути. Пусть первую половину пути тело двигалось со скоростью , а вторую половину пути — со скоростью . Требуется найти среднюю скорость движения тела.

  • Пусть — общая длина пройденного пути. Тогда на первом участке пути тело двигалось в течение интервала времени . Аналогично, на втором участке пути тело двигалось в течение интервала времени .
  • Тогда средняя скорость движения равна:

\[ \upsilon_{cp} = \frac{s}{t_1+t_2} = \frac{s}{\frac{s}{2\upsilon_1}+\frac{s}{2\upsilon_2}} = \frac{2\upsilon_1\upsilon_2}{\upsilon_1+\upsilon_2}. \]

2. Два одинаковых интервала движения. Пусть тело двигалось со скоростью в течение некоторого промежутка времени, а затем стало двигаться со скоростью в течение такого же промежутка времени. Требуется найти среднюю скорость движения тела.

  • Пусть — общее время пути. Тогда путь, пройденный телом в течение первой половины времени движения, равен: . Аналогично, путь, пройденный телом в течение второй половины времени движения, равен: .
  • Тогда средняя скорость движения равна:

\[ \upsilon_{cp} = \frac{s_1+s_2}{t} = \frac{\upsilon_1\frac{t}{2}+\upsilon_2\frac{t}{2}}{t} = \frac{\upsilon_1+\upsilon_2}{2}. \]

Здесь мы получили единственный случай, когда средняя скорость движения совпала со средним арифметическим скоростей и на двух участках пути.

Решим напоследок задачу из Всероссийской олимпиады школьников по физике, прошедшей в прошлом году, которая связана с темой нашего сегодняшнего занятия.

Тело двигалось с, и средняя скорость движения составила 4 м/с. Известно, что за последние с движения средняя скорость этого же тела составила 10 м/с. Определите среднюю скорость тела за первые с движения.

Пройденный телом путь составляет: м. Можно найти также путь, который прошло тело за последние с своего движения: м. Тогда за первые с своего движения тело преодолело путь в м. Следовательно, средняя скорость на этом участке пути составила:
м/с.

Задачи на нахождение средней скорости движения очень любят предлагать на ЕГЭ и ОГЭ по физике, вступительных экзаменах, а также олимпиадах. Научиться решать эти задачи должен каждый школьник, если он планирует продолжить свое обучение в вузе. Помочь справиться с этой задачей может знающий товарищ, школьный учитель или репетитор по математике и физике. Удачи вам в изучении физики!

Средняя скорость

Пусть материальная точка совершает движение по оси X все время в одном направлении. Тогда перемещением этой материальной точки за отрезок времени $\Delta t=t_2-t_1$ будет отрезок $\Delta x=x_2-x_1$. Если материальная точка все время своего движения перемещалась в одном направлении, то пройденный путь ($\Delta s$) равен по модулю величине перемещения:

\[\Delta s=\left|\Delta x\right|\left(1\right).\]

Если точка движется сначала в одном направлении, затем останавливается и движется в противоположном направлении, (например, так движется тело брошенное вертикально вверх) то путь равен сумме модулей перемещений в обоих направлениях:

\[\Delta s=\left|\Delta x_1\right|+\left|\Delta x_2\right|+\dots \left(2\right).\]

Определение средней скорости

Определение

Средней скоростью ($\left\langle v\right\rangle $) материальной точки за промежуток времени $\Delta t$ называют физическую величину, которая равна отношению перемещения, которое совершило тело к этому промежутку времени:

\[\left\langle v\right\rangle =\frac\left(3\right).\]

Направление средней скорости такое же, как у перемещения.

Единицей скорости является скорость такого движения, при котором перемещение точки в единицу времени равно единице длины:

Единица измерения скорости (в том числе и средней скорости) в Международной системе единиц (СИ) является метр в секунду:

Средняя скорость при переменном движении

При неравномерном движении величина средней скорости сильно зависит от выбора промежутка времени движения тела.

Рассмотрим движение тела, которое свободно падает вниз. Закон движения при этом:

Для моментов времени $t_1=0,1\ $c координата тела (подставим время $t_1$ в формулу (4)) равна: $x_1=0,049\ $м; для $t_2=0,2\ $c$\ x_2=0,196$ м, тогда $\left\langle v\right\rangle $в промежутке времени от $t_1=0,1$ с до $t_2=0,2\ $c будет:

Если взять для того же свободно падающего тела промежуток времени от $t_1=0,7$ с до $t_2=0,8\ $c, то средняя скорость получится равной $\left\langle v\right\rangle =7,4\frac$.

Средняя скорость равномерного движения

Только при равномерном движении средняя скорость является постоянной величиной и не зависит от выбора промежутка времени, в который движется тело. При равномерном движении материальной точки по оси X кинематические уравнения для перемещения запишем как:

Найдем среднюю скорость движения, используя определение (3) и выражения (6):

Для оценки численной величины средней скорости на практике используют следующее определение $\left\langle v\right\rangle $: средняя скорость равна отношению пройдённого пути (s) ко времени (t), которое было затрачено на движение:

\[\left\langle v\right\rangle =\frac\left(7\right).\]

Определяемая таким образом средняя скорость является скалярной величиной.

Примеры задач с решением

Задание. Пешеход, потратил первую половину времени своего движения, двигаясь со скоростью $v_1=5\frac$, вторую половину времени он шел со скоростью $v_3=3\frac$. Какова средняя скорость движения человека?

Решение. Сделаем рисунок.

Средняя скорость, пример 1

Для решения задачи используем формулу, определяющую среднюю скорость:

\[\left\langle v\right\rangle =\frac\ \left(1.1\right),\]

где путь складывается из двух участков движения:

Причем по условию задачи:

\[s_1=v_1t_1=v_1\frac\left(1.3\right)\ и\ \] \[s_2=v_2t_2=v_2\frac\left(1.4\right).\]

Подставим в определение средней скорости (1.1) правые части выражений (1.2) — (1.4), и учтем, что $t=t_1+t_2$ имеем:

Вычислим среднюю скорость пешехода:

\[\left\langle v\right\rangle =\frac=4\ (\frac).\]

Ответ. $\left\langle v\right\rangle =4\frac$

Задание. Какова средняя скорость, которую имела материальная точка за промежуток времени $\tau $, если уравнение ее скорости имеет вид:

\[v\left(t\right)=A+Bt+Ct^2\ \left(0\le t\le \tau \right)\left(2.1\right).\]

Решение. В качестве основы для решения задачи используем формулу ($t=\tau $):

\[\left\langle v\right\rangle =\frac\ \left(2.1\right).\]

Найдем путь материальной точки, учитывая уравнение скорости из данных задачи:

Подставим правую часть выражения (2.2) в (2.1), имеем:

Ответ. $\left\langle v\right\rangle =A+\frac+\frac^2>$

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Остались вопросы?

Здесь вы найдете ответы.

Как найти ср время в физике

Средняя скорость – не самое сложное понятие в кинематике. Однако для многих учащихся простота этого понятия оказывается обманчивой.
Известно, что средняя скорость – это величина, равная отношению пути, пройденного телом, ко времени, за которое пройден этот путь: Краткость и простота определения скрывают от некоторых учеников важные для решения задач вопросы и ответы на них.
1. Какое время следует учитывать при расчете средней скорости, если тело в пути делало остановки?
В определении указано: “. ко времени, за которое пройден этот путь”, то есть ко всему промежутку времени с момента, когда тело тронулось в этот путь (представьте, что Вы включили секундомер), до момента, когда тело преодолело этот путь (только в этот момент Вы останавливаете секундомер!). О том, что время на остановки не следует учитывать, в определении ничего не сказано (поэтому секундомер на промежуточных остановках не выключайте!). Таким образом, при расчете средней скорости следует учитывать всё время, которое ушло на преодоление пути (в том числе и время, потраченное на остановки).

2. Как правильно рассчитать среднюю скорость тела, которое начало движение в пункте А, окончило его в пункте В, но по дороге из А в В поворачивало назад (может быть ни один раз!), а затем вновь продолжало движение к пункту В?
В определении указано “. равная отношению пути, пройденного телом. ”, значит, при расчете средней скорости определяющим является не расстояние между точками (пунктами) начала и окончания движения, а реальный путь, которое прошло тело.

Пример 1. Найти среднюю скорость человека на пути от дома до станции, расстояние между которыми l =800 м, если, пройдя четверть пути, он вернулся домой (например, проверить, хорошо ли закрыта дверь) и через мин продолжил путь на станцию. Скорость движения человека постоянна и равна v =4 км/ч.

Решение. Началом движения человека, конечно, следует считать момент времени, когда он первый раз вышел из дома. Четверть пути составляет расстояние l1/4 =l : 4 =800 : 4 =200 м. При возвращении домой человек прошел путь 2l1/4 =400 м. После этого он вышел из дома второй раз и дошел до станции. Путь, пройденный человеком с начала движения, составит:

S = 2l1/4 + l =400 + 800 =1200 м =1,2 км .

Время t, которое затрачено на преодоление этого пути, складывается из времени пребывания дома и времени Т, в течение которого человек двигался по маршруту “из дома–к дому–на станцию”. Поскольку скорость движения человека постоянна (v =4 км/ч) и проделанный путь известен, то время движения составляет:

1,2 км : 4 км/ч =0,3 ч =18 мин.
Тогда все время, затраченное человеком, составляет:

t = + T = 2 + 18 =20 мин =1/3 ч.
Найдем среднюю скорость:

1,2 км : ч =3,6 км/ч.

Ответ: vср =3,6 км/ч.

Среднюю скорость движения человек оценивает довольно часто, но судит о ней, глядя на часы. Торопящийся человек соотносит расстояние, которое ещё осталось преодолеть, и время, отпущенное ему на это, после чего делает вывод (хотя числовое значение средней скорости вряд ли при этом находится): “Ну, теперь можно идти помедленнее” или “Придется еще поднажать, иначе не успею”.

Вернемся к рассмотренному примеру. Будем считать, что скорость v0 =4 км/ч выбрана человеком не случайно. проходя от дома до станции ежедневно, человек замечает, что расстояние l ==800 м, он проходит за время t0 =12 мин =0,2 ч:

= 0,8 км : 0,2 ч =4 км/ч.

По существу, это – средняя скорость, поскольку доподлинно неизвестно, с какой скоростью человек идет в каждый момент времени. Двигаясь с такой скоростью и затрачивая время t0, человек ежедневно успевает на станцию вовремя. Если приходится возвращаться домой (увеличивать путь, который надо преодолеть и на это требуется дополнительное время) или останавливаться (увеличивая время, необходимое на преодоление пути), выбранная скорость движения v0 не подходит: можно опоздать на станцию. Значит, надо увеличивать скорость движения. Но как это сделать без напрасных затрат сил?

Пример 2. Человек обычно доходит из дома до станции за время t0 =12 мин, проходя расстояние l =800 м. Однажды, пройдя четверть пути, он вспоминает, что не выключил электроприборы, и возвращается домой, выключает электроприборы, затрачивая время = 2 мин, и снова идет на станцию. С какой наименьшей скоростью надо двигаться человеку, после того как он повернул домой, чтобы успеть на станцию в обычное время (и не опоздать на электричку).

1. Обычно человек двигается со скоростью

2. Пройдя с такой скоростью четверть пути, он затратил время : 4 км/ч =0,05 ч =3 мин. Значит, в его распоряжении осталось время Т2 =t0 – T1 =12 – 3 =9 мин.

3. За время Т2 человек должен преодолеть путь до дома, а затем снова до станции:
м =1 км и, кроме того, часть времени ( = 2 мин) потратить дома. Поэтому путь S человеку придется преодолевать за время

то есть со скоростью, не меньшей, чем

1 км : ч = км/ч = км/ч » 8,6 км/ч.

Проверьте, что добежав до дома со скоростью км/ч, а затем шагая со скоростью v2 =2v0 =8 км/ч, человек придет на станцию вовремя.
Ответ: человеку необходимо двигаться со скоростью, не меньшей, чем км/ч. Обратите внимание, что средняя скорость за время (t =12 минут) от начала движения до его окончания составляет

м/мин =100 м/мин =6 км/ч.

Найденное значение vср в полтора раза выше, чем v0, и показывает, с какой начальной скоростью следует выходить человеку из дома, если он забывчив.

На рис.1 показан график зависимости скорости человека от времени для примера 2 в случае, если человек бежит домой со скоростью v1 =3v0 ==12 км/ч, а затем идет до станции очень быстрым шагом со скоростью v2 =2v0 =8 км/ч. Штрихпунктирной линией указан график движения со скоростью v0, а тонкой линией – со скоростью vср =6 км/ч.

Подсчитаем среднее арифметическое для значений скорости v0, v1, v2:

Это значение не равно значению средней скорости vср. Убедитесь в этом и не совершайте в дальнейшем распространенную ошибку: не пытайтесь искать среднюю скорость как среднее арифметическое значение (оно не имеет физического смысла!).

Пример 3. Автомобиль проезжает первую треть пути равномерно со скоростью v1 =108 км/ч, а остальные две трети пути – со скоростью v2 =72 км/ч. Найти среднюю скорость автомобиля.
Решение. Неверно считать, что средняя скорость совпадает со средним арифметическим значением v1 и v2, которое составляет

1. Найдем время t1 движения со скоростью v1, полагая, что весь путь равен L [км]. Из условия ясно, что

2. Время t2 движения на оставшемся участке пути составляет

3. Итак, время на продолжение пути L составляет

4. По определению средней скорости

Ответ : средняя скорость vср =81 км/ч.

Значение средней скорости совпадает со средним арифметическим значением скорости только в одном частном случае, когда тело двигается с различными скоростями так, что между последовательными моментами изменения (переключения) скорости проходит одинаковое время Т. Таким образом, тело двигается со скоростью v1 в течение времени t1=T, со скоростью v2 в течение времени t2=T, со скоростью v3 в течение времени t3=T и т.д. Если на протяжении пути скорость изменялась n раз, то пройденный путь

Время t, за которое пройден путь, составляет

Не запрещено для этого частного случая двигаться со скоростью v0=0, т.е. делать остановки. Но время остановки должно составлять t0 =T.

Пример 4. Вертолет пролетает без остановок равномерно и прямолинейно над пунктами А, В, С (в указанном порядке) и возвращается в А. Пункты А, В, С являются как бы вершинами треугольника. Расстояние между А и В составляет LAB =150 км, между В и С LBC =200 км, между С и А LCA =100 км. Время, за которое вертолет пролетает от одного пункта до другого, составляет полчаса. Найти среднюю скорость движения вертолета на маршруте АВСА. Изменится ли средняя скорость, если LCA =200 км и всё расстояние вертолет преодолеет за 1 ч?

Решение. 1. Находим скорость движения вертолета на каждом участке:

2. Поскольку t =0,5 ч одинаково для всех участков движения, то

3. Если расстояние LСА =200 км и tCA =1ч, то не меняется vCA=200 км/ч. Но в этом случае нельзя подсчитывать (для простоты) среднюю скорость как среднее арифметическое, так как t ? tAB ==tBC.

Ответ: 1) vcp1 =300 км/ч; 2) vcp2 =275 км/ч.

Как найти среднюю скорость

Соавтор(ы): Sean Alexander, MS. Шон Александер — репетитор, специализирующийся на преподавании математики и физики. Владеет компанией Alexander Tutoring, которая предлагает репетиторские услуги преимущественно по математике и физике на основании индивидуального подхода. Имеет более 15 лет опыта, работал преподаваталем физики и математики и репетитором в Стэнфордском университете, Университете штата Калифорния в Сан-Франциско и Стэнбриджской академии. Получил степень бакалавра по физике в Калифорнийском университете в Санта-Барбаре и магистерскую степень по теоретической физике в Университете штата Калифорния в Сан-Франциско.

Количество просмотров этой статьи: 37 289.

В этой статье:

Чтобы вычислить среднюю скорость, необходимо знать значение перемещения и общее время. Помните, что скорость задается как численным значением, так и направлением (поэтому указывайте направление в ответе). Если в задаче дано постоянное ускорение, вычислить среднюю скорость будет еще проще.

Часть 1 из 2:

Вычисление средней скорости по перемещению и времени

Step 1 Помните, что скорость.

  • Величины, которые задаются как численным значением, так и направлением, называются векторными величинами. [1] X Источник информации Над векторными величинами ставится значок в виде стрелки. Они отличаются от скалярных величин, которые задаются исключительно численным значением. Например, v → – это скорость. [2] X Источник информации
  • В научных задачах рекомендуется использовать метрические единицы измерения перемещения (метры, километры и так далее), а в повседневной жизни пользуйтесь любыми удобными единицами измерения.

Step 2 Найдите общее перемещение.

  • Например, ракета была запущена в северном направлении и двигалась в течение 5 минут с постоянной скоростью 120 метров в минуту. Чтобы вычислить общее перемещение, воспользуйтесь формулой s = vt: (5 минут) (120 м/мин) = 600 м (на север).
  • Если в задаче дано постоянное ускорение, воспользуйтесь формулой s = vt + ½at 2 (в следующем разделе описывается упрощенный способ работы с постоянным ускорением).

Step 3 Найдите общее время в пути.

  • Если даже в научной задаче время дано в часах или других единицах измерения, лучше сначала вычислить скорость, а затем преобразовать ее в м/с.

Step 4 Вычислите среднюю скорость.

  • Не забудьте указать направление движения (например, «вперед» или «на север»).
  • В формуле vср = Δs/Δt символ «дельта» (Δ) означает «изменение величины», то есть Δs/Δt означает «изменение положения к изменению времени».
  • Средняя скорость может быть записана как vср или как v с горизонтальной чертой сверху.

Step 5 Решение более сложных.

  • Анна идет на запад со скоростью 1 м/с в течение 2 секунд, затем мгновенно ускоряется до 3 м/с и продолжает идти на запад в течение 2 секунд. Ее общее перемещение составляет (1 м/с)(2 с) + (3 м/с)(2 с) = 8 м (на запад). Общее время в пути: 2 с + 2 с = 4 с. Ее средняя скорость: 8 м / 4 с = 2 м/с (на запад).
  • Борис идет на запад со скоростью 5 м/с в течение 3 секунд, затем разворачивается и идет на восток со скоростью 7 м/с в течение 1 секунды. Мы можем рассматривать движение на восток как «отрицательное движение» на запад, поэтому общее перемещение равно (5 м/с)(3 с) + (-7 м/с)(1 с) = 8 метров. Общее время равно 4 с. Средняя скорость равна 8 м (на запад) / 4 с = 2 м/с (на запад).
  • Юля проходит 1 метр на север, затем проходит 8 метров на запад, а затем проходит 1 метр на юг. Общее время в пути составляет 4 секунды. Нарисуйте схему этого движения на бумаге, и вы увидите, что оно заканчивается в 8 метрах к западу от начальной точки, то есть общее перемещение равно 8 м. Общее время в пути составило 4 секунды. Средняя скорость равна 8 м (на запад) / 4 с = 2 м/с (на запад).

Часть 2 из 2:

Вычисление средней скорости по постоянному ускорению

Step 1 Обратите внимание на начальную скорость и постоянное ускорение.

  • Если вы не понимаете единицу измерения м/с 2 , запишите ее как м/с/с или как метр в секунду за секунду. [3] X Источник информации Ускорение 2 м/с/с означает, что скорость велосипедиста увеличивается на 2 м/с за каждую секунду.

Step 2 Используя ускорение, найдите конечную скорость.

  • В начале (t = 0) велосипедист едет со скоростью 5 м/с.
  • Спустя 1 с (t = 1), велосипедист едет со скоростью 5 м/с + at = 5 м/с + (2 м/с 2 )(1 с) = 7 м/с.
  • Спустя 2 с (t = 2), велосипедист едет со скоростью 5 + (2)(2) = 9 м/с.
  • Спустя 3 с (t = 3), велосипедист едет со скоростью 5 + (2)(3) = 11 м/с.
  • Спустя 4 с (t = 4), велосипедист едет со скоростью 5 + (2)(4) = 13 м/с.
  • Спустя 5 с (t = 5), велосипедист едет со скоростью 5 + (2)(5) = 15 м/с.

Step 3 Используйте следующую формулу, чтобы вычислить среднюю скорость.

  • Не забудьте указать направление (в данном случае «вправо»).
  • Начальную скорость можно обозначить как v0, а конечную как v.

Step 4 Объяснение формулы.

Объяснение формулы. Чтобы найти среднюю скорость, необходимо вычислить скорость тела в каждый промежуток времени, сложить полученные результаты и разделить эту сумму на число временных промежутков. Однако это долго и утомительно. Вместо этого давайте найдем среднею скорость всего в двух (любых) временных промежутках.

Step 5 Используйте приведенную выше.

  • Независимо от того, какую пару временных промежутков вы выберите, вы получите одно и то же значение средней скорости. Например, (5 + 15)/2 = (7 + 13)/2 = (9 + 11)/2 = 10 м/с (вправо).

Step 6 Если бы мы.

  • Так как средняя скорость между любыми двумя промежутками времени остается постоянной, то общая средняя скорость равна средней скорости между любыми двумя промежутками времени.
  • Мы можем найти общую среднюю скорость, рассмотрев скорости в любых двух промежутках времени, например, начальную и конечную скорости. В нашем примере: (5 + 15) / 2 = 10 м/с (вправо).

Step 7 Математическое обоснование формулы.

  • s = vнt + ½at 2 (правильнее писать Δs and Δt).
  • Средняя скорость vср = s/t.
  • vср = s/t = vн + ½at
  • at = vк — vн
  • vср = vн + ½(vк — vн).
  • vср = vн + ½vк — ½vн = ½vн + ½vк = (vн + vк)/2.
  • Скорость отличается от «значения скорости», потому что скорость является векторной величиной. Векторные величины определяются и значением, и направлением, а скалярные величины только значением.
  • Если тело движется вперед и назад, можно использовать положительные числа, чтобы представить одно направление (например, вперед), и отрицательные числа, чтобы представить движение в другом направлении (например, назад). Запишите это в верхней части вашей работы, чтобы преподаватель понял ваши вычисления.

Похожие статьи

  • Как найти ускорение
  • Как найти скорость
  • Как вычислить мгновенную скорость
  • Как вычислить силу
  • Как найти начальную скорость
  • Как найти силу нормальной реакции
  • Как посчитать кинетическую энергию
  • Как вычислить массу
  • Как вычислить центр тяжести
  • Как вычислить мощность в лошадиных силах

Дополнительные статьи

вычислить общее сопротивление цепи

вычислить общее сопротивление цепи

вычислить среднюю скорость

вычислить среднюю скорость

прочитать маркировку конденсатора

прочитать маркировку конденсатора

найти ускорение

найти ускорение

перевести градусы Цельсия в градусы Кельвина

перевести градусы Цельсия в градусы Кельвина

понять формулу E=mc2

понять формулу E=mc2

найти полное сопротивление

найти полное сопротивление
создать статическое электричество

найти начальную скорость

найти начальную скорость
вычислить вес через массу

вычислить напряжение, силу тока и сопротивление в параллельной цепи

вычислить напряжение, силу тока и сопротивление в параллельной цепи

найти сопротивление последовательной и параллельной цепей

найти сопротивление последовательной и параллельной цепей

рассчитать силу натяжения в физике

рассчитать силу натяжения в физике

сделать клетку Фарадея

сделать клетку Фарадея

  1. ↑http://www.physicsclassroom.com/Class/1DKin/U1L1b.cfm
  2. ↑https://www.khanacademy.org/science/physics/one-dimensional-motion/displacement-velocity-time/v/calculating-average-velocity-or-speed
  3. ↑http://www.physicsclassroom.com/class/1DKin/Lesson-1/Acceleration
  4. ↑http://physics.stackexchange.com/questions/44685/why-is-average-velocity-the-midpoint-of-initial-and-final-velocity-under-constan

Об этой статье

Соавтор(ы): Sean Alexander, MS. Шон Александер — репетитор, специализирующийся на преподавании математики и физики. Владеет компанией Alexander Tutoring, которая предлагает репетиторские услуги преимущественно по математике и физике на основании индивидуального подхода. Имеет более 15 лет опыта, работал преподаваталем физики и математики и репетитором в Стэнфордском университете, Университете штата Калифорния в Сан-Франциско и Стэнбриджской академии. Получил степень бакалавра по физике в Калифорнийском университете в Санта-Барбаре и магистерскую степень по теоретической физике в Университете штата Калифорния в Сан-Франциско. Количество просмотров этой статьи: 37 289.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *